
AROS

ALGORITHMS FOR PARTITIONING A PICTURE

by

Claude R. Brice

Claude L. Fennema

Stephen A. Weyl

Artificial Intelligence Group

Technical Note 18

SRI Projects 7494 and 8259

January 1970

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 1970 2. REPORT TYPE

3. DATES COVERED
 00-00-1970 to 00-00-1970

4. TITLE AND SUBTITLE
AROS: Algorithms for Partitioning a Picture

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

I INTRODUCTION

In the region analysis work done by Brice and Fennema (1969), a one­

pass algorithm was used to initially partition the picture into named,

homogeneous, connected components and to set up the region structure

(AROS). This.one-pass algorithm is rather complex in nature, and several

alternatives have been suggested, one of which (a two-pass algorithm) we

have chosen to use for comparison purposes because of its simplicity and

* apparent efficiency.

Both algorithms use an L-shaped window to compare the elements of

the picture array. If two points differ in properties (only horizontal

and vertical comparisons are made), a pair of elementary vectors are

placed to separate them (see Figure 1).

X

X X

Figure 1

The curves made up of these elementary vectors partition the picture

into regions and serve as the boundaries of these regions. The two al-

gorithms discussed here differ in the way they label the picture elements

and the boundaries. Section II is a description of the one-pass algorithm,

Section III explains the two-pass algorithm, and Section IV is a com­

parison of their performance.

* This work was sponsored by the Advanced Research Projects Agency and the
Rome Air Development Center under Contract F30602-69-C-0056 and by the
Advanced Research Projects Agency and the National Aeronautics and Space
Administration under Contract NAS12-2221.

1

II THE ONE-PASS ALGORITHM

A. Background

The structure on which both of these algorithms operate is

made up of two arrays: a picture array Tl and a component array T2.

Each word of the picture array is two picture elements, each of which

is divided into the bit fields of Figure 2. Here S is a special bit

s p v

II
Figure 2

to denote curve headers; P is a field that contains the grayscale of

(t,j) when S = 0 or a pointer to a T2 word when S = 1. v contains the

vector code of the elementary boundary vectors that exist near the

point (i,j) (see Figure 3).

Figure 3

The component array T2 is an array of words (called component

words) having the format of Figure 4. One of these words is assigned to each

R B
p

B
v

Figure 4

2

G

curve header (picture element with S = 1). The R field contains the name

(in code form) of the region to which the point belongs; the D and B
p v

contain the point and vector that begin the boundary component tagged by

this word. (B is, of
p

points to this word.)

course, the pointer to the picture element that

Lastly, G is the grayscale of the point B . . p

The boundary of the region Rl is then extracted by scanning T2

for all the words with Code Rl in their R fields, going to the beginning

vector (point) and following the boundary using the SUCCESSOR function,

which goes from a vector VI to the next leftmost vector V2, as in Figure 5.

V2

Vl I ...

l
Figure 5

B. Some Notions

To simplify the presentation of the algorithm, we shall make

some conventions in terminology~

First we will always by convention denote the X field of a

word (or half word) Y by X(Y). For example, V(A) is the V field of the

point A. G(T2(P(PT))) is the G field of the element of T2 pointed at

by the P field of PT, and thus it contains the grayscale of PT. Next,

suppose PT = (i,j) is a picture point (half word) when we define the

grayscale function

3

= {P(PT) if S(PT) = 0
GS(PT) =

G(T2(P(PT))) if S(PT) = 1

Because an elementary vector is defined by a point PT and a vector code,

v, we will denote this vector (PT,v), Lastly, remembering that SUCCESSOR

(SOCC) is the name of the function used in following the boundary and

PREDECESSOR (PRED) is its inverse, we define 3 functions:

R (PT,X)
p

R (PT,X)
s

= jR(T2(P(PT))) if S(P1') = 1

tRP{(PRED(PT,X))) if S(PT) = 0

= {R(T2(P(PT))) if S(PT) = 1

Rs{{SUCC (PT,X))) if S(PT) = 0

{

R (PT 1 8) if (AND PT,8) = 1
RG(PT) = P

RG (LFT(PT)) otherwise

where LFT(PT) is the point to the left of PT,

C. The Algorithm

The algorithm is best explained by the flowchart of Figure 6

with the following notes: Box A (and V(B),s), is a check for the

presence of bit 8 in the V field of B, which means, since GS(A) f GS(B),

that the configuration in Figure 7 has been encountered.

This means (as far as we know at this point) that B is a point

of a new region.

Box B tests if the predecessor of (A,l) is (0,2). If so, we

have the configuration of Figure S, meaning that we have encountered a

new curve for the boundary oi' the region contain1 ng A.

t
NO

. : GS(A) = GS(B)
YES

.

1 1

SET V(A) = (OR V(A),l) 0 (AND

SET V(B) = (OR V(B),4) (AND V(A) 1 8)

(NOT(AND V(B).B)))

0 1

1
: (AND V(B) s> I 0 .. 0 I

YES
= R (A,8) I

• - R (D1 4)
s p .

@ NO
SET S(B) = 1 i

1 START NEW
(ANDV(A),2) :o,. T2 ENTRY E I RESTORE

R(E) = NEW T2(P(PT)) to

Bp(E) = B 1 free space,

Bv(E) = 8 •I
where PT is

FOLLOW (A, 1) the point found
back using by Rp(A,8)

0 FRED to first SET R(E) = R5 (D,4)

PRED(A,l) 1
(PT,v) such FOR ALL E &T2

!

NO that S. T, R(E) = R (A)
I (D1 2) ! S(PT) = 1 p

=
T Restore

YES T2(P(PT)) to

free cell iff
SET S(A) = 1 (AND
START NEW By(T2(P(PT)))l)
T2 ENTRY E = 1
R (E) = RG(A) I Bp(E) =A

I
.

Bv (E) = 1

t
NEXT I GS(B) = GS(C)

YES
WINDOW

POSITION

I: I 'I NO
1

D SET V(B) = (OR V(B),2)

SET V(C) = (OR V(C)8)

I
Figure 6

5

... A

D B

Figure 7

A

....
D B

Figure 8

The other tests are of a similar nature and deal with the con­

nection of two partial curves {boxes C and D) and the merging of two

partial, expanded regions (box D). This procedure is executed in a

raster-like fashion until tho entire picture has been processed.

I II THE TWO-PASS ALGORI'IliM

The basic du tu Ht.ructurc remains the Hume us for the one-pa::::;~

algorithm, but u bit table of four bits per picture point is added for

marking purposes, one for each possible vector. During the first puss

the separating vectors are created, and during the second pass the

regions and components are named.

A. First Pass

The first pass is merely to create and store in the array, in

the proper field, the elementary vectors of each boundary, using the

6

same L-shaped window as the one-pass algorithm, but without naming

regions and components. During this pass each picture point is visited

twice.

B. Second Pass

The algorithm proceeds from left to right, following a line

until it finds an unmarked vector. (The bit table is used to mark each

possible separating vector.) When an unmarked vector is found, the al­

gorithm marks it, creates a special pointer that indicates the beginning

of a new component, and makes a new entry in T2 similar to that used in

the one-pass algorithm. Then, starting from this vector, the boundary

is followed and every vector is marked until a marked vector is found

(obviously the starting vector). When following the boundary, the al­

gorithm sets up a counter to which -1 is added when a left turn occurs

and +1 is added when a right turn occurs. At the end of the following

procedure, if the result of the counter is negative, the boundary is

counterclockwise-oriented; it is clockwise-oriented if the result is

positive. A clockwise boundary means that there is a hole in one region,

and therefore there is a region with more than one component (see Figure 9).

If the result of the counter at this end of the following pro­

cedure is positive, the name of the region to which this component be­

longs is found by stepping to the left along one line until a marked

vector is found and by following this boundary to its beginning. Other­

wise, a new region name is created and stored in T2 1 and pointers are

set up in the same manner as for the one-pass algorithm. During this

second pass every point is visited at least once~

IV COMPARISON OF THE TWO ALGORITHMS

The two-pass algorithm has the obvious advantage of simplicity,

and the one-pass one may be faster in execution time, but it seems

7

pretty difficult to estimate what would be the running time of the two

algorithms without coding and executing them. In order to get a rough

approximation of these times, we decided to simulate the action of both

algorithms on an illustrative picture that includes most of the problems

met in a typical partition (see Figure 9),

A. Common Operations

The basic operations involved in both algorithms are: visiting

each picture element, comparing its value with the value of the adjacent

element in the L-shaped window, and putting in the elementary separating

vector if needed. These operations are the same for both algorithms and

therefore have no influence on the comparison.

B. Differences

Besides these common operations, the one-pass algorithm involves

mostly the following operations:

Follow: Using the SUCCESSOR or PREDECESSOR function, the

program, during this procedure, follows the boundary until

a special pointer is encountered. The cost of this opera­

tion is measured in the number of elementary vectors

(arrows). The basic operation} consisting of passing

from one vector to its successor, has been estimated as

30 ~s. (A sample program has been written,)

Arrow test: During the course of the execution, the program

has to test for a certain arrow configuration, The basic

instruction is to skip on mask bits. The cost has been

evaluated to 5 ~s.

In the same condition, the two-pass algorithm involves, be­

sides the operations already mentioned, the following operations:

8

Follow (with orientation): The boundary is followed, and

a counter is altered by -1 or +1, depending on whether the

boundary turns to the right or to the left. The cost of

this operation is a little larger than the usual follow;

it has been estimated to be 36 l"s.

Marking: While the above operation is performed, each

unmarked vector is marked. The basic operation includes

a test and an access to the bit table; its cost has been

estimated to be 10 ~s.

Scanning: During the second pass, the program scans the

picture array, looking for an unmarked vector# The cost

of the basic scan from one picture element to another has

been estimated to be 10 ~s.

With these definitions and estimations, the performance of the

two algorithms for the same picture (Figure 9) is compared on Table I.

V CONCLUSION

As far as our estimations are correct, it seems that the one-pass

algorithm works twice as fast as the two-pass algorithm. However, given

the same picture, the two-pass algorithm depends only on the number of

curves, but the one-pass algorithm depends on the nature of the curves.

The worst case for the one-puss algorithm would be the case where there

are n lot of 45° lines (with respect to the horizontal). This, however,

is not a problem in a real environment.

A decision has been made to implement the one-pass algorithm for

nvo reasons: It seems fasterJ and it consumes less space since it needs

no bit table.

9

1 10

1

10

Figure 9

10

,_. ,_.

Operations

Follow

Arrow test

Follow (with orientation)

Marking

Scanning

TOTAL (lls)

Time
(lls)

30

5

36

10

10

l

Table I

A B Difference
One-Pass Two-Pass A-B

117 X 30 = 3510 38 X 30 = 1140 2370

200 X 5 = 1000 I 0 1000

0 I 112 X 36 = 4032 -4032
I

0 I 112 X 10 = 1120 -ll20

o jzoo x 10 = zooo -2000

4510 1 8292 -3782

